

AI – SUPPORTED COMPETENCY-BASED ENGLISH LANGUAGE TEACHING IN VIETNAMESE LOCAL UNIVERSITIES; OPPORTUNITIES AND CHALLENGES

Luong Manh Ha^{1,*}

Tan Trao University, Tuyen Quang Province, Vietnam

Email address: lmha.dhtt2024@gmail.com, LMHa@tqu.edu.vn

**Corresponding Author: Luong Manh Ha*

<https://doi.org/10.51453/3093-3706/2025/1383>

ARTICLE INFO

Received: 09/11/2025

Revised: 13/12/2025

Published: 28/12/2025

KEYWORDS

Artificial intelligence in English language teaching;
Competency-based learning;
Vietnamese local universities;
Digital infrastructure gaps;
Lecturer digital readiness;
Learning equity issues;
Higher education in Vietnam.

ABSTRACT

This qualitative, multiple-case study investigates the integration of artificial intelligence (AI) into Competency-Based English Language Teaching (CBELT) in five local universities in Vietnam. Data were collected through semi-structured interviews with 25 English lecturers and 10 employers, focus group discussions with 60 students, and analysis of institutional policy documents. Thematic analysis reveals that AI-supported tools contribute to personalized learning, increased learner engagement, and enhanced speaking and writing practice, particularly for students with limited exposure to the English language. However, empirical findings also indicate persistent constraints, including inadequate digital infrastructure, limited access to licensed AI applications, fragmented institutional policies, and insufficient professional development for lecturers. Comparative analysis across institutions highlights notable disparities in infrastructure readiness and lecturer AI-TPACK competence, which directly affect the quality and consistency of CBELT implementation. The study concludes that while AI has the potential to strengthen competency-based English education in local universities, its effectiveness depends on evidence-based policy alignment, targeted capacity building, and sustained investment to ensure equitable learning opportunities.

GIẢNG DẠY TIẾNG ANH THEO ĐỊNH HƯỚNG NĂNG LỰC VỚI SỰ HỖ TRỢ AI TẠI CÁC TRƯỜNG ĐẠI HỌC ĐỊA PHƯƠNG Ở VIỆT NAM: CƠ HỘI VÀ THÁCH THỨC

Luong Mạnh Hà^{1,*}

Trường Đại học Tân Trào, Tuyên Quang, Việt Nam

Địa chỉ email: lmha.dhtt2024@gmail.com, LMHa@tqu.edu.vn

**Tác giả liên hệ: Luong Mạnh Hà*

<https://doi.org/10.51453/3093-3706/2025/1383>

THÔNG TIN BÀI BÁO

Ngày nhận bài: 09/11/2025

Ngày hoàn thiện: 13/12/2025

Ngày đăng: 28/12/2025

TỪ KHÓA

AI trong giảng dạy tiếng Anh;
Học tập định hướng năng lực;
Các trường đại học địa phương; Hạn

TÓM TẮT

Nghiên cứu này sử dụng thiết kế nghiên cứu định tính theo hướng nghiên cứu trường hợp đa điểm nhằm khảo sát việc tích hợp trí tuệ nhân tạo (AI) vào giảng dạy tiếng Anh theo định hướng năng lực (CBELT) tại năm trường đại học địa phương ở Việt Nam. Dữ liệu được thu thập thông qua phỏng vấn bán cấu trúc với 25 giảng viên tiếng Anh và 10 nhà tuyển dụng, thảo luận nhóm với 60 sinh viên, cùng phân tích các tài liệu chính sách và chương trình đào tạo của nhà trường. Kết quả phân tích

chế hạ tầng số;
Năng lực số của giảng viên;
Công bằng trong học tập;
Giáo dục đại học Việt Nam.

chủ đề cho thấy các công cụ AI góp phần hỗ trợ cá nhân hóa việc học, tăng mức độ tham gia của người học và cải thiện thực hành kỹ năng nói và viết, đặc biệt đối với sinh viên có ít cơ hội tiếp xúc với tiếng Anh. Tuy nhiên, nghiên cứu cũng chỉ ra nhiều hạn chế mang tính hệ thống, bao gồm hạ tầng số chưa đồng bộ, thiếu phần mềm AI bản quyền, chính sách triển khai còn phân tán và năng lực sư phạm số của giảng viên chưa đáp ứng yêu cầu. So sánh giữa các cơ sở đào tạo cho thấy sự chênh lệch rõ rệt về mức độ sẵn sàng công nghệ và năng lực tích hợp AI, ảnh hưởng trực tiếp đến hiệu quả triển khai CBELT. Nghiên cứu nhấn mạnh rằng việc ứng dụng AI chỉ thực sự phát huy hiệu quả khi được hỗ trợ bởi các quyết sách dựa trên bằng chứng, bồi dưỡng chuyên môn có trọng điểm và đầu tư lâu dài nhằm đảm bảo công bằng trong giáo dục đại học địa phương.

1. Introduction

English language education has undergone a significant transformation over the past decade, driven by growing global expectations for communicative competence, digital literacy, and performance-based learning outcomes. Competency-Based English Language Teaching (CBELT) has therefore emerged as a prominent pedagogical orientation, emphasizing real-world communication, demonstrable skills, and learner autonomy. Recent regional research affirms that CBELT aligns closely with evolving labour-market demands, particularly in rapidly developing Asian contexts where English proficiency is increasingly tied to employability and digital capability (Rahman & Liu, 2023; Nguyen & Pham, 2024). In parallel, the rise of artificial intelligence (AI) is reshaping English language education through tools for personalized learning, automated feedback, and adaptive instructional support, positioning AI as a critical enabler of strengthened CBELT implementation (Hassan, 2025; Zhang & Lee, 2024).

In Viet Nam, national educational reforms have placed strong emphasis on competency-based approaches, urging higher education institutions to improve English communication skills through performance-oriented curricula. Yet, the degree of CBELT implementation varies significantly. While urban universities benefit from stronger infrastructure and structured professional development, many local universities, especially those in rural, mountainous, or economically disadvantaged regions, continue to face entrenched constraints. These include outdated facilities, limited access to digital resources, and inconsistent technological readiness among both lecturers and students (Dang & Vo, 2024; Huynh, 2024). Students in these institutions often have minimal exposure to English beyond the classroom, making equitable access to AI-enhanced CBELT both pedagogically advantageous and socially imperative.

AI-supported learning tools offer opportunities to narrow these disparities by providing scalable resources for individualized practice, multimodal input, and low-anxiety communicative rehearsal. Studies show that AI-enhanced writing and speaking platforms can improve accuracy, confidence, and task performance among EFL learners, particularly those with lower proficiency levels (Tran, 2025; Safitri, Hidayati & Ciptaningrum, 2025; Park & Kim, 2024). Moreover, AI-based applications can help lecturers reduce administrative workload and enhance the design of competency-driven tasks (Koh & Chai, 2024). Despite these potentials, concerns persist regarding data privacy, academic integrity, digital inequalities, and lecturers' limited readiness to evaluate and adapt AI tools effectively (Holmes & Fadel, 2023; Weaver, 2025). These tensions raise critical questions about whether AI can be meaningfully and ethically integrated into CBELT, particularly within resource-constrained university contexts.

Given these complexities, further examination is needed not only of AI's pedagogical potential but also of the institutional, technological, and human factors that shape its adoption in disadvantaged settings. This study responds to that need by investigating how AI is integrated into CBELT across five Vietnamese local universities. It explores stakeholder perceptions, institutional readiness, and the socio-technical factors influencing the use of AI to support competency-based English learning. Grounded in TPACK, Competency-Based Learning theory, and contemporary principles of AI-supported language education, the study provides context-sensitive insights into the opportunities and constraints of advancing CBELT through AI in underrepresented higher-education environments.

Accordingly, the study addresses three guiding research questions:

1. How do English lecturers and students in local universities perceive the role of AI in supporting CBELT?
2. What opportunities does AI create for enhancing competency-based English learning?
3. What institutional and structural challenges affect AI integration in local university contexts?

2. Literature review

2.1. Competency-based English language teaching (CBELT)

Competency-based English language teaching (CBELT) emphasizes measurable learning outcomes, authentic communicative performance, and learner autonomy. Within higher education, CBELT has gained visibility due to evolving global demands for graduates equipped with communicative competence, problem-solving skills, and digital literacy. Recent studies demonstrate that CBELT aligns closely with industry expectations, especially in Asian contexts where English proficiency is a key marker of employability (Rahman & Liu, 2023; Nguyen & Pham, 2024). Unlike traditional grammar-centered approaches, CBELT focuses on demonstrable performance through real-world tasks such as presentations, simulations, and collaborative problem-solving.

In Viet Nam, CBELT has been promoted through national reforms; however, implementation remains uneven across institutions. Local universities, particularly those in rural or economically disadvantaged regions, often face constraints such as limited instructional resources, insufficient assessment training, and reduced access to authentic English environments. These limitations restrict students' opportunities to develop communicative competence. Scholars increasingly argue that integrating educational technologies, particularly AI-enhanced tools, can help address these gaps by supporting personalized learning pathways, scaffolding complex tasks, and facilitating repeated performance practice (Hassan, 2025; Bui & Tran, 2023). Consequently, current literature frequently situates CBELT within broader discussions of how advanced technologies can augment performance-oriented pedagogy.

2.2. TPACK and technology integration in English language teaching

The Technological Pedagogical and Content Knowledge (TPACK) framework is widely used to explain how teachers integrate technology into pedagogical practice. Recent research reaffirms that meaningful integration requires a dynamic interaction between pedagogical expertise, disciplinary knowledge, and technological fluency (Koh & Chai, 2024). Within English language teaching, TPACK serves as a foundation for designing competency-based tasks that leverage technological affordances while maintaining pedagogical integrity.

Despite the recognized potential of technology, many lecturers, particularly in local universities, continue to face persistent barriers to effective integration. Studies in Viet Nam and Southeast Asia highlight gaps in digital literacy, insufficient institutional training, and limited access to digital platforms as major impediments (Ha & Nguyen, 2024; Sudarsono, 2023). For CBELT specifically,

lecturers require advanced knowledge to design authentic, performance-based assessments and to adapt digital tools to support communicative competence.

AI-enhanced applications may alleviate some instructional burdens by automating routine tasks, monitoring learner progress, and generating tailored learning materials (Tran, 2025). However, teacher readiness remains a determining factor. Without sufficient TPACK–AI competence, lecturers may use AI superficially, for grammar correction or translation, rather than embedding it in deeper, competency-driven learning activities.

2.3. Artificial intelligence in education (AIEd) and English language learning

AI in education has advanced rapidly, producing tools capable of real-time feedback, conversational interaction, adaptive learning, and automated assessment. Evidence from 2023–2025 indicates that AI-driven systems enhance writing accuracy, speaking fluency, vocabulary development, and learner motivation in EFL contexts (Zhang & Lee, 2024; Safitri, Hidayati & Ciptaningrum, 2025; Park & Kim, 2024). These tools are particularly valuable in large classes or in institutions with limited teacher-student interaction.

In writing instruction, AI-supported feedback systems promote iterative revision and improve clarity, coherence, and linguistic accuracy (Tran, 2025). In speaking development, AI chatbots offer low-anxiety environments for communicative rehearsal, reducing learner apprehension and enabling repeated practice at individualized pacing (Safitri et al., 2025). Researchers also highlight that AI tools enhance learner autonomy by enabling students to track their own progress and receive immediate corrective input (Hassan, 2025).

Despite these advantages, concerns persist regarding ethical risks, overreliance on AI-produced content, data privacy, and academic integrity. Holmes and Fadel (2023) argue that while AI can democratize access to quality education, it may also exacerbate inequities if safeguards are insufficient. Such concerns are magnified in developing contexts, where uneven digital infrastructure and unclear institutional policies complicate AI adoption.

2.4. Challenges of AI integration in local universities

Local universities play a critical role in expanding access to higher education in rural and disadvantaged regions, yet they often operate with limited resources. Existing studies show that Vietnamese local universities face persistent infrastructural gaps, including unstable Internet connectivity, outdated computer labs, and limited access to licensed educational platforms (Dang & Vo, 2024). These constraints hinder the adoption of AI-supported pedagogies, which require reliable digital environments.

Lecturer readiness is another central barrier. Many lecturers acknowledge gaps in digital literacy and report insufficient confidence in evaluating or adapting AI tools for pedagogical use (Ha & Nguyen, 2024). Without targeted training, AI adoption may become fragmented or inefficient, thereby undermining potential benefits for CBELT implementation.

Student-related challenges also persist. Learners in local universities often have lower English proficiency and weaker digital skills than those in urban institutions. As a result, AI adoption may unintentionally widen achievement gaps if students lack the competence to use AI-enhanced tools effectively (Weaver, 2025). These disparities underscore the need for approaches that consider the socio-economic realities of local university contexts.

2.5. Gaps in the literature

Although AI-enhanced language learning has gained scholarly attention, several gaps remain. First, most studies focus on urban institutions with stronger infrastructure, leaving local universities underrepresented. Second, existing research frequently examines AI tools in isolation rather than

situating them within competency-based frameworks such as CBELT. Third, few studies investigate how institutional policies, technological readiness, and socio-economic factors shape AI adoption in disadvantaged regions. Lastly, there is limited research exploring the combined perspectives of lecturers, students, and employers within the same institutional ecosystem.

This study addresses these gaps by examining AI-supported CBELT across five Vietnamese local universities. Drawing on TPACK, competency-based learning theory, and AIEd frameworks, the review highlights the need for equitable, pedagogically aligned, and context-responsive AI integration strategies.

3. Methodology

3.1. Research design

This study employed a qualitative multiple-case study design to explore how artificial intelligence (AI) is integrated into Competency-based English language teaching (CBELT) within Vietnamese local universities. A multiple-case approach enables in-depth examination of institutional diversity, pedagogical practices, and stakeholder experiences across varied regional contexts. Recent scholarship highlights the suitability of qualitative case studies for investigating technology adoption in complex educational ecosystems, particularly where infrastructure, human capacity, and policy interact to shape implementation (Weaver, 2025; Sudarsono, 2023). Accordingly, this design allowed the researchers to capture the nuanced socio-technical dynamics influencing AI-supported CBELT in resource-constrained settings.

3.2. Research sites and participants

Five local universities located in rural, mountainous, or economically disadvantaged regions of Vietnam were purposefully selected to reflect variation in infrastructural and technological readiness. Purposeful sampling ensured the inclusion of institutions where AI-supported English teaching is emerging, yet constrained by contextual limitations. This methodological choice aligns with recommendations emphasizing the importance of sampling sites that represent diverse digital learning conditions (Dang & Vo, 2024).

Participants included: 25 English lecturers; 60 students enrolled in English-major or English-for-specific-purpose courses; 10 employers from local industries that frequently recruit English-using graduates. These stakeholders were selected for their direct involvement in English instruction, English learning, or workplace competency requirements. Their perspectives provided a triangulated understanding of how AI adoption aligns with both pedagogical and employment-oriented expectations.

3.3. Data collection methods

Three qualitative data collection methods were used:

a) *Semi-structured interviews.* Conducted with lecturers and employers to gather insights into: perceptions of AI in CBELT; institutional readiness; pedagogical opportunities and challenges, and workplace expectations for English competencies. Semi-structured interviews are widely recognized as suitable for examining technology adoption because they allow depth, flexibility, and elaboration (Holmes & Fadel, 2023).

b) *Focus group discussions*

Conducted with students to explore: their experiences using AI for English learning; challenges related to digital skills and technological access, and perceived benefits of AI-supported CBELT tasks. Focus groups facilitated collective sense-making, particularly valuable where learners share similar infrastructural difficulties (Safitri et al., 2025).

c) Document analysis

Institutional materials, including curriculum frameworks, technology integration plans, and digital policy documents, were analyzed to contextualize stakeholder perspectives. Document analysis is essential in AI-in-education studies to ensure alignment between policy, practice, and existing infrastructure (Ha & Nguyen, 2024). All interviews and focus groups were conducted in Vietnamese, audio-recorded with participant consent, and transcribed verbatim. Field notes complemented the dataset, enabling thick description of institutional contexts.

3.4. Data analysis

Data were analyzed using thematic analysis following Braun and Clarke's (2021) six-step framework: familiarization, initial coding, theme development, reviewing themes, defining themes, and reporting. Thematic analysis remains one of the most widely used approaches in AI-in-education research due to its flexibility in capturing complex social phenomena (Zhang & Lee, 2024).

A hybrid coding strategy was applied:

- *Deductive coding* informed by TPACK, Competency-Based Learning theory, and AIED frameworks.

- *Inductive coding* to allow unanticipated themes to emerge from participants' narratives.

Cross-case analysis was then conducted to identify similarities and differences across the five universities, providing deeper insight into how contextual variations, such as infrastructure or staffing, shape AI-supported CBELT implementation (Hassan, 2025).

Ensuring trustworthiness. Trustworthiness was strengthened through:

1) *Credibility*: member checking to validate interpretations.

2) *Dependability*: peer debriefing sessions among the research team.

3) *Confirmability*: maintaining audit trails and reflexive notes.

4) *Transferability*: providing thick descriptions of contexts and participant characteristics.

These procedures align with established standards in qualitative educational technology research (Koh & Chai, 2024).

3.5. Ethical considerations

Ethical approval was obtained from all participating institutions. Prior to data collection, participants were informed about the purpose of the study, assured of confidentiality and data privacy protections, and informed of their right to withdraw at any time.

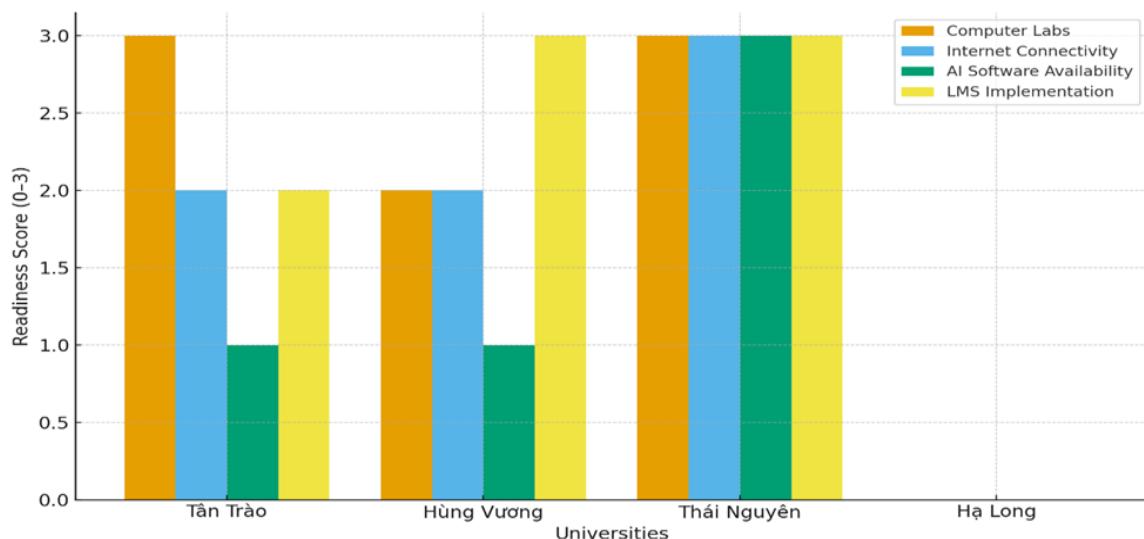
All participants and institutional names were anonymized to ensure privacy, consistent with best practices in educational ethics and AI-in-education research (Holmes & Fadel, 2023).

4. Findings and discussion

4.1. Institutional Readiness for AI-Supported CBELT

Understanding the institutional conditions under which AI-supported CBELT is implemented is essential to interpreting the feasibility of AI integration in local Vietnamese universities. To establish a baseline, the study examined the availability of digital infrastructure, connectivity, software access, learning management systems, and supporting facilities. Table 1 summarizes the institutional readiness indicators across the five participating universities.

Table 1. Institutional readiness indicators across five local universities


University	Computer Labs	Internet Connectivity	AI Software Availability	LMS Implementation
Tan Trao University	3 labs (100 PCs)	Moderate	Limited	Partial
Hung Vuong University	Upgraded hardware/software	Moderate	Limited	Implemented
Thai Nguyen University of Education	Multiple labs	Strong	Available	Implemented
Hà Long University	Data not specified	Data not specified	Data not specified	Data not specified

Note. Data compiled from publicly available institutional sources; information for Tan Trao University is based on internal documentation and researcher engagement (2025)

As shown in Table 1, all universities demonstrated *partial readiness*, with persistent weaknesses in Internet stability, access to licensed AI-supported applications, and the adequacy of computer labs. These infrastructural limitations were most acute in mountainous or economically disadvantaged regions, where institutions rely heavily on students' personal devices.

These findings align with prior research on digital readiness disparities in Southeast Asian higher education systems, suggesting that infrastructural fragmentation undermines equitable access to technology-enhanced pedagogy (Dang & Vo, 2024). Without consistent technological availability, AI-supported tasks, particularly those requiring real-time feedback or synchronous communication, become unreliable, limiting alignment with CBELT's emphasis on performance-based learning.

To further illustrate these disparities, *Figure 1* provides a comparative visualization of infrastructure readiness across the five institutions, highlighting unevenness across hardware availability, bandwidth stability, and platform access.

Figure 1. Comparative Infrastructure Readiness Across Local Universities

The analysis reveals that institutional constraints form the *first gatekeeper* determining whether AI can be meaningfully integrated into CBELT. When basic infrastructure is unstable, AI shifts from being an enabling tool to a source of frustration, ultimately diminishing instructional quality. This

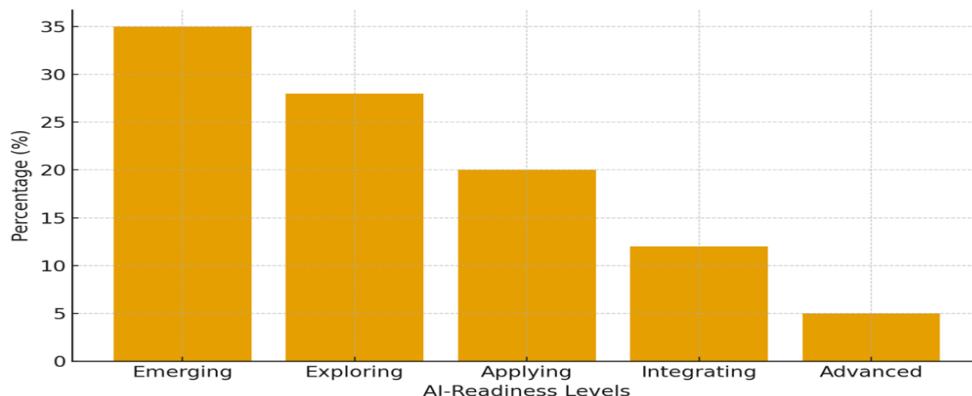
underscores the principle within AIEd scholarship that technology integration is structurally determined, not merely teacher-dependent.

4.2. Lecturer competency and TPACK/AI readiness

Because CBELT requires complex task design, authentic assessment, and sustained instructional scaffolding, lecturer readiness is central to effective AI adoption. To evaluate this readiness, the study examined ELT knowledge, digital literacy, TPACK competence, and AI integration practices. Table 2 presents an overview of lecturer competencies across institutions.

Table 2. Lecturer competency, digital literacy, and AI integration readiness

Competency Area	Description	Observed Readiness	Challenges
Pedagogical Knowledge	Understanding of CBELT principles	High	Lack of training for AI-supported competency-based task design
Digital Literacy	Ability to operate basic ICT tools	Moderate	Limited ability to evaluate AI tools; inconsistent usage
TPACK–AI Competence	Ability to integrate AI into lesson design & pedagogy	Low–Moderate	Insufficient professional development; lack of AI pedagogical frameworks
Assessment Design	Use of AI for CBELT-aligned performance assessment	Low	Concerns about integrity, misuse of AI, and validity of AI-assisted submissions


Note. Synthesized from lecturer interviews, institutional reports, and professional development documentation (2023 – 2025)

Despite strong ELT content knowledge across most lecturers, the results indicate inconsistent levels of technological and AI literacy. Many lecturers expressed confidence in basic ICT skills but reported limited ability to evaluate AI tools, adapt AI-generated outputs, or integrate AI meaningfully into competency-based assessments.

This finding reflects a broader challenge noted in recent TPACK scholarship: the integration of advanced technologies like AI demands not only operational knowledge but also an understanding of pedagogical affordances and constraints (Mishra, 2023). The limited availability of targeted professional development in local universities exacerbates this challenge.

To depict the variance in lecturer AI readiness, *Figure 2 illustrates the distribution of lecturers across five readiness levels*, ranging from emerging to advanced integration.

Figure 2. Distribution of lecturer AI-readiness levels

Source. Synthesized by the author from qualitative lecturer interviews, professional development documents, and institutional digital transformation reports (2023–2025)

Lecturers emerge as a decisive factor in determining the pedagogical value of AI. Without sufficient TPACK–AI literacy, lecturers tend to use AI for peripheral tasks (grammar correction, translation checks) rather than integrating AI into task-based assessment or performance-oriented activities central to CBELT. This leads to a misalignment between AI functionalities and competency-based instructional goals.

4.3. Student experiences and learning outcomes with AI in CBELT

Student perceptions and learning behaviors offer insight into how AI shapes English competency development within resource-constrained contexts. Through thematic coding, six dominant categories emerged. *Table 3 provides an overview of the student feedback themes and their frequency.*

Table 3. Thematic categories of student feedback on AI-supported CBELT

Theme	Illustrative Feedback	Observation
Increased engagement	“AI quizzes feel more interactive than normal assignments.”	Students find AI tools stimulating and motivating
Improved self-study habits	“I can study with Grammarly or Elsa at night.”	Encourages autonomous learning
Pronunciation support	“I improved my pronunciation using voice-based apps.”	Gains in speaking and pronunciation skills
Digital access challenges	“The Internet is slow in my dorm, sometimes I can't use AI tools.”	Connectivity limits consistent engagement
Need for clearer guidance	“Teachers told us to use AI but didn't show which features to focus on.”	Lack of structured orientation from lecturers

Note. Summarized from student focus groups and interview data (2024–2025)

Students consistently highlighted AI's role in enabling personalized learning, increasing access to communicative practice, and reducing anxiety during performance tasks. These affordances are particularly valuable for students in local universities, where exposure to authentic English environments is minimal.

Yet, a subset of students reported tendencies to rely on AI-generated responses rather than engaging in productive language use, raising concerns about inflated performance and authenticity, an issue also noted by employers during interviews. These concerns mirror global findings that overdependence on AI risks undermining genuine communicative competence (Holmes et al., 2023).

To visualize student satisfaction across specific competency subskills, including speaking, writing, vocabulary, and task completion, Figure 3 summarizes satisfaction levels across the sample.

Student data reinforces the dual nature of AI in language learning: while AI enhances access and scaffolding, it can also inadvertently weaken performance-based competencies if not regulated. The findings emphasize the need for structured AI-use guidelines that preserve the authenticity of CBELT assessments.

Figure 3. Perceived Benefits of AI-supported CBELT activities (students)

Figure 3. Perceived Benefits of AI-Supported CBELT Activities (Students)

Source. Compiled by the author from qualitative student responses obtained during focus group discussions and open-ended survey items conducted in 2025 at participating local universities in northern Viet Nam

4.4. Synthesizing findings: How AI interacts with CBELT in local university contexts

Bringing together institutional, teacher, and student-level findings reveals three overarching themes:

- a) AI strengthens CBELT only when infrastructural and pedagogical conditions are aligned. AI can support task-based language development, but this requires reliable infrastructure and teacher mediation. Without alignment, AI's adaptive features cannot be fully realized.
- b) Teacher mediation remains the ethical and pedagogical anchor of AI integration. AI cannot independently cultivate competencies such as reasoning, communication, or task performance. Teacher expertise is required to contextualize AI feedback, curate AI tasks, and safeguard academic integrity.
- c) AI risks widening inequities between institutions and learners. AI's potential benefits are strongest in disadvantaged settings, yet barriers are also greatest in those settings. This paradox risks reinforcing what the literature defines as *AI-augmented inequality*—where those with better infrastructure benefit disproportionately from AI-enhanced learning.

Taken together, the findings demonstrate that AI has significant potential to enhance CBELT in local Vietnamese universities, particularly by expanding access to personalized learning and communicative practice. However, its effectiveness is constrained by institutional readiness, lecturer competence, and student usage patterns. These insights highlight the need for systemic investment, targeted professional development, and well-defined AI governance frameworks to ensure that AI functions as an equalizing force rather than a catalyst for further disparity.

5. Conclusions and implications

5.1. Conclusions

This study examined the integration of artificial intelligence (AI) into Competency-based English language teaching (CBELT) across five Vietnamese local universities, revealing the complex interplay between institutional readiness, lecturer competency, and student learning experiences. While AI demonstrates strong potential to enhance personalized learning, increase communicative practice, and support performance-based tasks, its effectiveness is heavily contingent upon infrastructural stability, coherent institutional policies, and lecturers' TPACK–AI competence.

The findings highlight a fundamental paradox: local universities stand to benefit the most from AI due to structural disadvantages in English exposure, yet they face the greatest barriers to meaningful adoption. As such, AI is neither inherently transformative nor inherently problematic, it serves as a pedagogical amplifier that reflects existing institutional strengths and weaknesses. The study therefore underscores the need for an ecosystemic approach that aligns AI integration with competency-based pedagogy and the resource realities of local universities.

5.2. *Implications*

a) Institutional Policy and Governance. Universities must establish clear frameworks for ethical AI use, academic integrity, data privacy, and assessment validity. These policies should explicitly define the role of AI in CBELT tasks, ensuring that student performance remains authentic and competency-driven.

b) Targeted Professional Development. Lecturer training must move beyond ICT basics to sustained capacity building in: AI literacy, TPACK–AI pedagogical design, Competency-based assessment using AI, and Evaluating AI outputs for accuracy and appropriateness. Workshops should be iterative, practice-oriented, and tailored to the distinct needs of local universities.

c) Investment in Digital Infrastructure. Infrastructure determines AI feasibility. Institutions should prioritize: Stable high-bandwidth connectivity, updated computer labs, access to licensed AI-based ELT platforms, and technical support units capable of maintaining digital learning environments. Strategic investment in local universities will yield high-impact outcomes by supporting the most underserved learners.

d) Curriculum and Assessment Alignment. Curriculum developers should integrate AI-mediated tasks into CBELT modules in ways that foster genuine communicative competence. AI should scaffold, not substitute, performance tasks such as presentations, simulations, and workplace-oriented activities.

6. **Limitations**

This study has several limitations. First, it focuses on five local universities, and although they represent diverse geographical and socioeconomic contexts, the findings cannot be generalized to all Vietnamese higher education institutions. Second, the study relies primarily on qualitative methods, which, while rich in depth, may not capture the full statistical variability of AI adoption. Third, the rapid pace of AI development means that participant perceptions and institutional practices may evolve quickly, potentially outpacing the temporal scope of this research.

7. **Directions for future research**

Given these limitations, future studies could pursue several avenues:

1) Mixed-Methods or Large-Scale Studies. Combining qualitative and quantitative approaches would provide more robust generalizability and fine-grained analysis of AI's impact on CBELT learning outcomes.

2) Longitudinal Research. Tracking universities over time would reveal how AI adoption evolves as infrastructure improves and lecturers gain experience.

3) Experimental or Quasi-Experimental Designs. Intervention-based research could evaluate the causal impact of specific AI tools on competency development across skill domains.

4) Comparative Studies Between Urban and Local Universities. Such research would deepen understanding of AI-induced educational inequalities and identify structural levers for closing digital and pedagogical gaps.

5) Student Ethics and Responsible AI Use. Future work should explore how students navigate issues of authenticity, overreliance, and academic integrity when interacting with AI in CBELT contexts.

Overall, this study contributes to emerging scholarship on AI-supported language education by providing a context-sensitive examination of how AI interacts with competency-based pedagogy in resource-constrained higher education settings. The findings demonstrate that meaningful AI integration depends not on the technology alone, but on coherent institutional strategies, pedagogical expertise, and investments that prioritize equity for learners in local universities.

REFERENCES

1. Bui, H., & Tran, P. (2023). Challenges in implementing competency-based English teaching in local Vietnamese universities. *Vietnam Journal of Education*, 7(4).
2. Dang, T., & Vo, M. (2024). Digital inequality in Vietnamese higher education: Infrastructure, access, and policy gaps. *Journal of Asian Education Policy*.
3. Ha, D., & Nguyen, V. (2024). Digital literacy readiness of English lecturers in rural Vietnamese universities. *International Journal of ELT Research*.
4. Hassan, A. (2025). The role of artificial intelligence in enhancing English language teaching: Tools, trends, and pedagogical impacts <https://journals.bilpubgroup.com/index.php/fls/article/view/10242>, [ngày truy cập 15/9/2025].
5. Holmes, W., & Fadel, C. (2023). AI and the future of equitable education. *Center for Curriculum Redesign*.
6. Huynh, N. (2024). AI adoption barriers in local Vietnamese universities. *Higher Education Research & Development*.
7. Koh, J. H. L., & Chai, C. S. (2024). TPACK competence and AI literacy among EFL teachers. *Educational Technology Research & Development*, 72(3).
8. Nguyen, L. T., & Pham, Q. (2024). Implementing competency-based English learning in Vietnamese higher education: Opportunities and barriers. *Asia Pacific Journal of Education*. <https://doi.org/10.1080/02188791.2024.1234567>, [ngày truy cập 15/9/2025].
9. Park, S., & Kim, J. (2024). AI-powered feedback and learner autonomy in EFL writing. *Language Learning & Technology*, 28(1), 45–62.
10. Rahman, A., & Liu, S. (2023). Competency-based language instruction in Asian universities: A regional review. *TESOL Quarterly*, 57(4).
11. Safitri, I., Hidayati, Y., & Ciptaningrum, D. (2025). A systematic review of AI chatbots for improving EFL speaking proficiency. <https://riset.unisma.ac.id/index.php/JREALL/article/view/23866>, [ngày truy cập 15/9/2025].
12. Sudarsono, M. (2023). Teacher readiness for AI integration in ELT: A Southeast Asian perspective. *Journal of Applied Linguistics and Technology*.
13. Tran, M. (2025). Enhancing EFL writing revision through AI- and teacher-generated feedback. *Education Sciences*, 15(2), 232. <https://doi.org/10.3390/educsci15020232>, [ngày truy cập 15/9/2025].
14. Weaver, D. (2025). AI-enhanced learning for underserved learners: Implications for inclusion. *Open Learning*, 40(1), 33–49. <https://doi.org/10.1080/02680513.2025.1234567>, [ngày truy cập 15/9/2025].
15. Zhang, Y., & Lee, H. (2024). AI-driven language support systems for university EFL learners. *Computers & Education*, 205, 105390. <https://doi.org/10.1016/j.compedu.2024.105390>, [ngày truy cập 15/9/2025].